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1. Introduction 
Plumpton & Ferraro (1955) considered the torsional oscillations of an infinitely 

conducting sphere in a uniform magnetic field. They showed that if the fluid 
and magnetic viscosity were assumed to be zero in the governing differential 
equations, then a continuous spectrum of eigenvalues could be obtained. This 
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FIGURE 1. Free boundary case (Stewartson 1957). The disturbance is confined to a cir- 
cular cylinder of radius O ( 4 v )  ; outside this zone the solution vanishes asymptotically. 

novel feature was clarified by Stewartson (1957) when he obtained the exact 
solution and showed that in the correct limit of a perfect conductor the eigen- 
values are discrete. Furthermore, in the limit of infinite conductivity the oscilla- 
tions occur only on the axis of symmetry (figure 1). 

Here we consider the case of torsional oscillations of a highly conducting, small 
viscosity, fluid sphere contained by a rigid wall in a uniform magnetic field. 
The insight obtained from the exact solution of the analogous cylindrical prob- 
lem is used to formulate an asymptotic approximation of the equations governing 
the spherical problem. The boundary conditions are satisfied exactly and the 
differential equations are satisfied in an approximate manner for small values of 

18-2 



276 R. A .  Wentxell 

fluid kinematic viscosity u and magnetic viscosity 7. There is a doubly infinite 
discrete set of eigenvalues with even and odd modes. The corresponding oscilla- 
tions are confined to the immediate vicinity of the axis of symmetry with a 
boundary layer confined to the corresponding small region of the spherical 
surface. In  the special case of q = u, which can be solved exactly, the disturbance 
is confined to the two points of the spherical surface along the axis of symmetry. 

2. The equations and boundary conditions 
It is supposed that a fluid sphere of radius a has an imposed uniform magnetic 

field H.  If v, h are the velocity and magnetic vectors in the disturbed state, 
Maxwell’s and Euler’s equation (e.m.u.) reduce to 

ah 
- = V x (V x h) + TV2h, 
at 

1 
(2.2) 

(2.3) 

av 
p- = - Vp +- (V x h) x h +pvV2, 

v . v  = V . h  = 0) 

at 4n 

where q = 1/(4nu) is the magnetic viscosity, u the conductivity, u the kinematic 
viscosity, p the density (constant), P the pressure, and only the magnetic body 
forces are retained. 

We choose a set of cylindrical co-ordinates r,  #, x in which the z-axis is parallel 
to the direction of the imposed field and the origin is the centre of the sphere. All 
perturbed quantities are assumed to oscillate with the same period 2n/a, and are 
small. For toroidal disturbances, symmetrical about x ,  we may write 

v = (O,Qreiat, 0)) h = (0, hrd(4np) eiat, H ) ,  (2.4) 

where fi and h are small functions of r and x only. The vector equations reduce 
to P = const. and 

where A = H/J(4np)  is the Alfven velocity. 
The two boundary conditions at the surface of the sphere R = a are: 
First, since h is continuous and since h and the potential of the external field 

are functions of r and z only, 

h = 0 when R = a,. (2.7) 

fi = 0 when R = a. (2 .8 )  

Secondly the velocity v must be zero on the right boundary R = a, 

In  general it is difficult to obtain non-trivial eigenvalues satisfying (2.5)- 
(2.8). However, we are concerned with the special case of 7 and u vanishingly 
small. If we let 7 and v -+ 0 in (2.5) and (3.6) we obtain, 

iah = A(aQ/az) and id2 = A(ah/az), (2.9) 
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with the solution 

h = C(r)cos(pz+B(r)}, CI = iC(r)sin{px+B(r)}, (2.10) 

where a2 = A2P2. 

contradictions. 
Equations (2.9) and (2.10) are the incorrect limiting form since we obtain 

First, since h = 0 when R = a, 

p(a2- YE)++ B(r,) = (m + 4) 7~ or C(r)  = o if r =I= yo ,  (2.11) 

where ro < a and m is an integer. 
Secondly, since Q = 0 when R = a, 

,8(a2-r:)*+B(r0) = mn or C(r )  = 0 if r + ro, (2.12) 

which contradicts (2.11). 
Thirdly, from (2.5) and (2.6) we require that aCI/ar and ah/ar vanish a t  r = 0 

for all 7, v and z. Thus if Q and h are not identically equal to zero, they cannot 
vanish everywhere on the axis of symmetry. In  the limit 7 -+ 0, v --f 0 this must 

C(0) =i= 0. (2.13) also be true implying 

This contradicts (2.11) and (2.12) unless ro = 0 which we will presently show to 
be true. The contradiction between (2.11) and (2.12) may be resolved by a 
boundary layer in the neighbourhood of z = a. In  $ 3  we will solve the analo- 
gous cylindrical problem to gain insight into the spherical one. 

3. Eigenvalues for the cylindrical case 
In  the analogous cylindrical problem we replace the fluid sphere of the previous 

section with a fluid cylinder defined by r = a, z < la1 (figure 2 (a) ). The equations 
and boundary conditions to be satisfied are given by (2.5) to (2.8).Hence h 
and 52 satisfy 

The solution of (3.1) has the form 

h = &) J1(Lcr)/r, (3.2) 

where Jl(pr) is the bounded Bessel function of first order and first kind, pa gives 
the zeros of the Bessel function satisfying h = CI = 0 at r = a. Thus the solution 
becomes 

$(z )  = A, eai + A, eaz 2: + A, e-al + A, e-a8 z, 

where 
(3.3) 

ia(7+v)+21;Ivp2+A2+ J{A4+47Vp2A2+2i01(7+v)A2-a2(7-v) } 

ia(7 + v) + 2719 + A2 - J(A4 + 47vp2A2 + 2ia(7 + v) A2 - a2(7 - v)2} + 

a1= ( 27v 2)”. 

-i - a2= ( 
13.4) 

and 
_ _ _  

27v 
(3.5) 



where (3.7) 

Applying the boundary conditions to  these solutions gives the following secular 
equation 

!! 

ia) (b) 

FIGURE 2. Fixed boundary case. (a )  A boundary layer O(qv)& forms at  both ends 
of the cylinder; the disturbance varies as J,(pr)/r. ( b )  The disturbance falls off as 
exp { - r2 / (q  + v)f} and thus becomes negligible outside a zone of radius O(q  + v)i. Further- 
more, a boundary layer O ( q v ) t  is present at  each pole. 

Consider the case of v and q small with a = O( 1), ,u = O( l ) ,  then 

and 

Consequently (3.8) reduces to  

(3.9) 

(3.10) 

(3.11) 

where K = J ( v / q )  and m is an integer. It then follows that if K + 1, 

for finite values of p and m. 
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We now demonstrate a boundary-layer approach to  obtaining the eigenvalues. 
Prom the previous solution we have 

a2 3 a -+-- = O(1) 
arz r ar 

(3.13) 

for p finite. 

(2.9) with the solution 
I n  the interior (away from x = & a) of the fluid we let 7 and v --f 0 and obtain 

h, = Bsinpx+Ccospz, Q, = -iBcospz+iCsinpz, (3.14), (3.15) 

where PA = a and C ,  B are functions of r only, 

tions (2.5) and (2.6) reduce to 
I n  the boundary layer formed near z = f a the operator a/& is large and equa- 

(3.16) 

The appropriate solutions of these equations are 

hz = W )  [exp { ( x  - a )  4hP)} - 11 = - a2 &/r) 

h3 = -w) rexp {- (2 + a)  A/J(rv)I-  11 = Q3 J(v/r) 

(3.17) 

(3.18) 
a t  z = a, and 

a t z =  -a. 
To match these solutions we require that 

(3.19) 1 h,(a) = hz( -a), Q,(a) = a,( -a), 
h,( - a)  = h 3 ( a ) ,  Ql( - a) = Q,(a). 

Hence for a non-trivial solution 

(sin~a-zKcos/3a) ( c o s ~ u + ~ K s i n p u )  = 0, (3.20) 
whereh’ = (v/q)B. 

Alternatively (3.20) may be written 

which gives 

(3.21) 

(3.22) 

where m is an integer and K + 1. 

values. First, in the interior of the fluid, equation (3.1) becomes 
We now proceed to  obtain the first-order effect of 7 and v upon the eigen- 

with the solution hl = ;-(Bsinpz+Ccospz), J l ( l 4  (3.24) 

where i (n + ’) ($Az + as) 
A 2AZa 

(3.25) 
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From (2 .5 )  we get 

iJ ( r ( i(p2A2 + a2) ( v - 7) a, = ~ ) ( - B c o s ~ z + C s i n ~ z )  ~+------------+O(~+V)~ 
r 2A2a 

Secondly, in the boundary layer we have 

where 

(3.27) 

(3.28) 

The appropriate solution near z = a is 

ha = D(exp((z - a)?>- 11 + (a-  2 )  F. (3.29) 

From (2.5) we obtain the corresponding !2, namely 

Similarly near z = - a we get 

and 
h-a = E[exp { - ( x  + a )  y )  - 13 + ( z  + a )  G (3.31) 

E ia(7 - v) iaE 
-a = - K {e-("+a)r - 1 + O ( r l + ~ ) ' ) - ~ ( z + a ) + O ( z + a ) ~ ,  (3.32) 

where D, E, B, G are functions of T only. 

we get 
We now expand h, and Q, ,about z = a, letting (a - z )  = el. Hence from (3.24) 

h,(a - el) = ~ ( B  sin pa + C cospa+pq( - B cospa + C sin pa) + O(e:)}, (3.33) J I ( P )  

r 
and 

iJ( l E C  r )[(-Bcos/?a+Csinpa) 1 + ~ ) ( , u 2 A 2 + a 2 ) )  [ 2A2a 
a1(a - el) = ~ 

r 
1 

- F 1 ~ ( B s i n ~ a + C c o s ~ ~ , ) + o ( ~ - v ) e 1 + 0 ( ~ + ~ ) 2 ~  (3.34) 

when el is small. 
For a similar expansion of h,, R, about x = --a we let (z+ a)  = e2. Hence 

hl( -a+€,) = _I J1(pr) { - B sin pa + c cos pa + e 2 p ( ~  cos pa + c sin pa) + ~ ( e i ) ) ,  
r 

(3.35) 
and 

i J (  r 
r 

a,( -a+e2) = k) [ ( - ~ c o s p a -  csinpa) 

+ Be2( - B sin pa + C cos pa) + O(v - 7) e2 . (3.36) 1 
We now let z --f -a (on the boundary-layer scale) to obtain 

-D+Fe, = h,(a-el) ,  ) 

i K - { 1 + r ) + 7  = Q,(a,-e,), 
D ia(7-v) iaD.5, (3.37) 
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and in the boundary-layer solutions at  z = - alet x -+ 00 ( z  = O(7v))) to give 

(3.38) 

From the matching conditions (3.37) and (3.38) we obtain for a non-trivial solu- 
tion 

Subsequently (3.25) and (3.39) become 

which is the same value as was obtained from the exact solution. 

4. Eigenvalues of the spherical problem 
For the primary oscillations in r we assume for 7 and v zero that the oscillations 

occur only on the axis of symmetry of the sphere, which is consistent with 
Stewartson’s (1957) related problem. Stewartson’s problem differs from the pre- 
sent one only in the boundary conditions. The additional boundary condition is 
satisfied by a boundary layer at  2 = & a as in the cylindrical case (figure 2 ( b ) ) .  
Consequently the leading term (7 = v = 0) for the eigenvalues of the spherical 
problem is the same as the corresponding term of the cylindrical case, namely 
a as given by equation (3.22). 

We use the same approach as in the cylindrical case to determine the first- 
order effect of 7 and v. First, we assume that in the interior of the fluid the govern- 
ing equation’is similar to that for the cylindrical case (equation 3.23), i.e. 

(4.1) 

where 

Let us consider the first-order effect of curvature in the immediate vicinity of 
the axis of symmetry by letting 

where y = r/a < 1. The boundary conditions are Q = h = 0 at z = +a,  h and 
Q -+ 0 as y moves away from the axis. 

x = t( 1 - iy”, 

Upon retaining leading terms in Y, equation (4.1) becomes 

in terms of the new variables (a/ay > a/a [ ) .  
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The solution of (4.3) is of the form 

h, = Y (y) (B  sin b[ + C cos /3[) (4.3) 

with 

(4.5) 

A solution is possible (Stewartson 1957) only if 

= n+ 1, (4.7) 

where ?a is an integer. The solution is then 

For finite values of n the disturbance falls off as exp { - r2 ,/(7 + v)} and so is 
confined to the axis of symmetry. This is consistent with our initial assumption. 
The disturbance is negligible except in the region where r2 < O(7 + v)4. 

From (4.7) and (4.5) we obtain 

(4.9) 

It follows that D = O(7 + ,,)-hand hence equation (4.2) is satisfied to O{vv/(r  + v)}. 
Furthermore, Y(0)  $; 0 which is required by $ 2  (i.e. C(0) =k 0) .  

Ql = i( -Bcosp[+Csinp[) 

From (2 .5 )  and (2.6) we have the solution 

where K = .J(v/7) and y2 < O(7 + v)*. 

(2.6), we get 
In  the boundary layer a/ag = O(yv)-g; if we let .J(rv) = ( [ & a )  in (2.5) and 

(4.11) 2 ( 5 2 )  h = O(?p)+. aE a p  
Near d(7v)g = [ - a  we have 

(4.12) 
D 

ha = D(& - 1) + O(yv)B, Qa = ( 1  - ezA) + O(yv)g,  

and near , 1 ( 7 1 ~ )  = + a 

h-, = E(e-za- 1) +0(7v)*, 

where D and E are functions of r only. 

Q - ~  = - (et A - 1) + 0(yv)4-, (4.13) 
h' 

Prom the matching conditions 

(4.14) 
h,(-a) = hl(a), %(-a) = Q&), 

h-,(a) = hl( -a) ,  M-,(co) = Ql( -a) ,  
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Equation (4.15) reduces to 

+higher 0 ( ~ + v ) ,  (4.16) 

where K + 1. 

the disturbances decaying logarithmically. 
Thus for 7 and v small there is a doubly infinite discrete set of eigenvalues with 

The case of 7 = v can be solved exactly. Let y = Q 5 h and then (2.5) and (2.6) 
may be written as 

i a y =  , A Z + v ( Z + : g + $ ) ,  (4.17) 

where y = 0 at R2 = r2+ x 2  = a2. Introduce spherical co-ordinates (R,  8, $), 
where x = Rcos8, r = Rsin8. (4.18) 

Then equation (4.17) becomes 

) .  (4.19) 
( a2y 4 ay 1 a2y 3 ~ 0 t B a y  

+ & I  -+--+-- 
aR2 R aR R2 a%2+ 7 

If we let y = P(8)  P ( R )  exp ( T BAR cos el.), (4.80) 

equation (4.19) becomes 

and 

(4.81) 

(4.22) 

C being an arbitrary constant of separation. 
The boundary conditions now become F = 0 when R = a. The solution of 

(4.22) is then F(R) = Jp(pR)/R%, (4.23) 

(4.24) 
where p2 = - (ia+ $A2/v)/v, pa = kIcL',(real), 

/3 = order of the Bessel function and k,, denotes the zeroes. In  order to solve 

1 p = 4 4 9 + 4 C )  2 2, 

(4.22) let x = cos 8, then 
d2P dP 

( l -x2 ) - - -4x -+CP = 0. 
dX2 dX 

The solutions then are 

(4.25) 

((2m + 3) (2m + 5 )  . . . (2m + 21% + l))] XZk+l ,  k=m ( - )k(m-l)!  

(4.26) 
where m is an integer and, Cl = 2(2m - 1) (m + I),  p1 = 2m + $, and 

( - ) k ( m -  I)!  
(( 2m + 1) (2m + 3) . . . (2m + 2k - I)} p]  , 

(4.27) 
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where C2 = 2(m- 1)  ( 2 m +  I), pZ = 2m- i. Hence Q and h may be written as 

where ?a = 1,  3, 3, ..., 

(4.28) 

(4.29) 

(4.30) 

Thus for the special case of 7 = v the disturbances are confined to the vicinity 
of the two points on the spherical surface intersected by the axis of symmetry. 
In  the Iimit of v -+ 0 the disturbance is confined to two points, z = +_a, on the 
spherical surface. 
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